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1. Introduction

1.1 Purpose

The moment-area method, developed by Mohr, is a powerful tool for finding the
deflections of structures primarily subjected to bending. Its ease of finding
deflections of determinate structures makes it ideal for solving indeterminate

structures, using compatibility of displacement.

We will examine compatibility of displacement in more detail later, but its essence is
the knowledge of certain displacements. For example, we know that the displacement
of a simply supported beam is zero at each support. We will use this information, in

association with Mohr’s Theorems, to solve for related indeterminate beams.
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2. Theory

2.1 Basis

We consider a length of beam AB in its undeformed and deformed state, as shown on

the next page. Studying this diagram carefully, we note:

1. AB is the original unloaded length of the beam and A’B’ is the deflected

position of AB when loaded.

2. The angle subtended at the centre of the arc A’OB’ is @ and is the change in

curvature from A’ to B’.

3. PQ is a very short length of the beam, measured as ds along the curve and dx

along the x-axis.

4. d@ isthe angle subtended at the centre of the arc ds.

5. d@ isthe change in curvature from P to Q.

6. M is the average bending moment over the portion dx between P and Q.

7. The distance A is known as the vertical intercept and is the distance from B’ to
the produced tangent to the curve at A’ which crosses under B’ at C. It is

measured perpendicular to the undeformed neutral axis (i.e. the x-axis) and so

is ‘vertical’.
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2.2 Mohr’s First Theorem (Mohr I)

Development

Noting that the angles are always measured in radians, we have:

From the Euler-Bernoulli Theory of Bending, we know:

i_M
R ElI
Hence:
do=M g
El

But for small deflections, the chord and arc length are similar, i.e. ds = dx, giving:

dQ:M-dx
El

The total change in rotation between A and B is thus:

> C—y

B
M
do= {E
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The term M/EI is the curvature and the diagram of this terms as it changes along a

beam is the curvature diagram (or more simply the M/EI diagram). Thus we have:

|\/|
:‘95 eA E

>'—.UU

This is interpreted as:

[Change in slope], . = {Area of % diagram}

AB

This is Mohr’s First Theorem (Mohr I):

The change in slope over any length of a member subjected to bending is equal

to the area of the curvature diagram over that length.

Usually the beam is prismatic and so E and | do not change over the length AB,
whereas the bending moment M will change. Thus:
1 B
QAB :E:[M dX

[Change in Slope]AB _ [Area of ME:jlagram]AB
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Example 1

For the cantilever beam shown, we can find the rotation at B easily:

: é B £I ConsmpaTt
ol .
AA - a— SSPE AT A
/ e
5 S CHMIGE 1A
) e score AT
SesVE AT S
M=PL
“w2rs BAAD
YL

Thus, from Mohr I, we have:

[Change in slope],, = [Area of % diagram}

AB

1 PL
T

Since the rotation at A is zero (it is a fixed support), i.e. €, =0, we have:

2
9, - PL
2El

7 Dr. C. Caprani



Structural Analysis I11

2.3 Mohr’s Second Theorem (Mohr II)

Development

From the main diagram, we can see that:

dA=x-d@

But, as we know from previous,

d@ =—-dx

Thus:

>
w
>
Il
1 >%=—w

First moment of % diagram about B

This is easily interpreted as:
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Area of Distance from B to centroid

Vertical Y
= X
Intercept |, % diagram of (Ej diagram
BA

BA

This is Mohr’s Second Theorem (Mohr 11):

For an originally straight beam, subject to bending moment, the vertical
intercept between one terminal and the tangent to the curve of another
terminal is the first moment of the curvature diagram about the terminal where

the intercept is measured.
There are two crucial things to note from this definition:
e Vertical intercept is not deflection; look again at the fundamental diagram — it

Is the distance from the deformed position of the beam to the tangent of the

deformed shape of the beam at another location. That is:

A#0O

e The moment of the curvature diagram must be taken about the point where the

vertical intercept is required. That is:

ABA * AAB
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Example 2

For the cantilever beam, we can find the defection at B since the produced tangent at

Ais horizontal, i.e. 8, =0. Thus it can be used to measure deflections from:

A

\F NSNS
o)
G
%
$
i

Thus, from Mohr I, we have:

1 PL][2L
Ao, == L. — || ==
BA {2 EI}[B}

And so the deflection at B is:

_p*
5 3El
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2.4 Area Properties

These are well known for triangular and rectangular areas. For parabolic areas we

have:

Shape Area Centroid
X
e i o
2
\%/;’“// A=2Xy Y%x
‘ /
K/z_
R
A
j 1 'S A=—xy ngx
S
/g&
s T 3/4)( 7{,
a4
4
8 \M A==xy Y:%x
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3. Application to Determinate Structures

3.1 Basic Examples

Example 3
For the following beam, find o;, 8., 6; and 6. given the section dimensions shown

and E =10 kN/mm?.

131
B - }] 690
- 2’7" u;

|

¥—

3

To be done in class.
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Example 4
For the following simply-supported beam, we can find the rotation at A using Mohr’s
Second Theorem. The deflected shape diagram is used to identify relationships

between vertical intercepts and rotations:

The key to the solution here is that we can calculate A;, using Mohr Il but from the

diagram we can see that we can use the formula S = Ré for small angles:

Agp=L-0,

Therefore once we know Ag, using Mohr I, we can find 8, =A,, /L.

To calculate A;, using Mohr Il we need the bending moment and curvature

diagrams:
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/e
v
W EZ
e
YEL

Thus, from Mohr I, we have:

1 PL L
Ao =| = L. — || =
BA {2 4EI}{2}

B PL®
16El

But, A;, =L-6, and so we have:
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3.2 Finding Deflections

General Procedure

To find the deflection at any location x from a support use the following relationships

between rotations and vertical intercepts:

Thus we:
1. Find the rotation at the support using Mohr 11 as before;

2. For the location x, and from the diagram we have:

0, =X-0; — A

X

15 Dr. C. Caprani



Structural Analysis |11

Maximum Deflection
To find the maximum deflection we first need to find the location at which this

occurs. We know from beam theory that:

_do

S =—
dx

Hence, from basic calculus, the maximum deflection occurs at a rotation, =0

€4 ..é:Z:-— 5#
T e e eu A )

b
/.ole.qx
AR

» -
| eL

To find where the rotation is zero:
1. Calculate a rotation at some point, say support A, using Mohr Il say;
2. Using Mohr I, determine at what distance from the point of known rotation (A)

the change in rotation (Mohr 1), dé,, equals the known rotation (6,).

3. This is the point of maximum deflection since:

0,-d6, =0,-6,=0
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Example 5

For the following beam of constant El:

(a) Determined,, 6, and & ;

(b) What is the maximum deflection and where is it located?

Give your answers in terms of EI.

yfokA

A g 3 S

i

To be done in class.
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3.3 Problems

1. For the beam of Example 3, using only Mohr’s First Theorem, show that the

rotation at support B is equal in magnitude but not direction to that at A.

2. For the following beam, of dimensions b=150 mm and d=225mm and

E =10 KN/mm?, show that 8, =7x10"* rads and &, =9.36 mm.

% }sgu

7T 1/
A

3. For a cantilever AB of length L and stiffness El, subjected to a UDL, show that:

wl L wl

0. = : =
®  BEI ®  8EI

4. For a simply-supported beam AB with a point load at mid span (C), show that:

_ P
¢ 48El

5. For a simply-supported beam AB of length L and stiffness El, subjected to a UDL,

show that:

wl® wl _ 5w

AT24E1T BT 24ElIT T° 384El
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4. Application to Indeterminate Structures

4.1 Basis of Approach

Using the principle of superposition we will separate indeterminate structures into a

primary and reactant structures.

For these structures we will calculate the deflections at a point for which the

deflection is known in the original structure.

We will then use compatibility of displacement to equate the two calculated

deflections to the known deflection in the original structure.

Doing so will yield the value of the redundant reaction chosen for the reactant

structure.

Once this is known all other load effects (bending, shear, deflections, rotations) can

be calculated.

See the handout on Compatibility of Displacement and the Principle of Superposition

for more on this approach.
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4.2 Example 6: Propped Cantilever

For the following prismatic beam, find the maximum deflection in span AB and the

deflection at C in terms of El.
y ook
A D By
7 %
< YA
i e SO

e =

Find the reaction at B
Since this is an indeterminate structure, we first need to solve for one of the unknown

reactions. Choosing V, as our redundant reaction, using the principle of

superposition, we can split the structure up as shown:

"~
120 e . : ‘5..-" ;
- e k) ’ " RZ
g o v
oo K
p—t—+
b = "
4R
(a) = (b) + (c)

In which R is the value of the chosen redundant.
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In the final structure (a) we know that the deflection at B, J,, must be zero as it is a

roller support. So from the BMD that results from the superposition of structures (b)

and (c) we can calculate o5 in terms of R and solve since 6, =0.

TASCEOT
AT %

1
=5 (2000~ 64R)

But since 6, =0, 6, = Ag, and so we have:

ElAg, =0
%(2000—64R):0
64R = 2000
R =+31.25 kN
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The positive sign for R means that the direction we originally assumed for it

(upwards) was correct.

At this point the final BMD can be drawn but since its shape would be more complex

we continue to operate using the structure (b) and (c) BMDs.

Find the location of the maximum deflection
This is the next step in determining the maximum deflection in span AB. Using the

knowledge that the tangent at A is horizontal, i.e. 8, =0, we look for the distance x

from A that satisfies:
dé,, =6,-6,=0

By inspection on the deflected shape, it is apparent that the maximum deflection

occurs to the right of the point load. Hence we have the following:

Smox e TANGE VT
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So using Mohr | we calculate the change in rotation by finding the area of the

curvature diagram between A and x. The diagram is split for ease:

X
Vs 7§
Loo ]
€T bR
E 3
- (& i
4 £z
The Area 1 is trivial:
1200 _ 200

1
_T.9. M N
A 2 El El

For Area 2, we need the height first which is:

_4-x 4R _4-125—125_125_125X

h
24 EIl AE| El El

And so the area itself is:

125 125
=X:| ———X
& {EI El }

For Area 3 the height is:

h

125 _[125 125 X} _125
El |[EI EI] El
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And so the area is:

1 125
< X-——X
2 El

Being careful of the signs for the curvatures, the total area is:
Eldg,, =—A +A + A
125 j 125 ,
+—X

=-200+ X(125 _TX

= [%—%j X* +125x — 200
8 4

Setting this equal to zero to find the location of the maximum deflection, we have:

—%xz +125x—-200=0

5x? — 40X + 64 =0

Thus, x=589m or x=221m. Since we are dealing with the portion AB,
X=2.21m.

Find the maximum deflection

Since the tangent at both A and x are horizontal, i.e. 4, =0 and 6, =0, the deflection

Is given by:

Using Mohr Il and Areas 1, 2 and 3 as previous, we have:
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52
toe ‘ %, =220 1 543
Area 25 X X Aixl__ﬁ' '
1 | v _308.67
El
22— §.2_= -3
o _4-221 4R 5594
2.2! ? 4 ElI El
—
' SS7%
Area EAETEP FZ | Ay 55.94 2.21
5 AX, =221. 2202 222
El 2
e 136.61
~E
2.2 = 2.21.125 6906
'\"*“——*r El  El
Groe [y A
R S| 2 AX —[1.2 21-—69'06]1 473
3 - 127 | 7
T .0 = U3 112.43
> "Bl

Thus:

EIA, =EIS,  =-308.67+136.61+112.43

s - —59.63
El

The negative sign indicates that the negative bending moment diagram dominates, i.e.

the hogging of the cantilever is pushing the deflection downwards.
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Find the deflection at C

For the deflection at C we again use the fact that &, =0 with Mohr Il to give:

wS / &3
=
¥

From the diagram we have:

ElA,, = —G 2-200}(% 4}{%-4-125](2%)

5. = +100
El

The positive sign indicates that the positive bending moment region dominates and so

the deflection is upwards.
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4.3 Example 7: 2-Span Beam

For the following beam of constant El, using Mohr’s theorems:
(a) Draw the bending moment diagram;
(b) Determine, 6, and o ;

Give your answers in terms of EI.

g«iu griua
A C
A é‘ > é 3 %7
X

To be done in class.
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4.4 Example 8: Simple Frame

For the following frame of constant El =40 MNm?, using Mohr’s theorems:
(a) Draw the bending moment and shear force diagram;

(b) Determine the horizontal deflection at E.

ok

-3 e |
6

7 A mr &E

ree7
22

Part (a)
Solve for a Redundant

As with the beams, we split the structure into primary and reactant structures:

o $e

3]
e

7757
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We also need to draw the deflected shape diagram of the original structure to identify

displacements that we can use:

To solve for R we could use any known displacement. In this case we will use the
vertical intercept A, as shown, because:

e We can determine A, for the original structure in terms of R using Mohr’s

Second Theorem;
e We see that A ; =66, and so using Mohr’s First Theorem for the original

structure we will find 6,, again in terms of R;

e We equate the two methods of calculating A, (both are in terms of R) and

solve for R.
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Find A, by Mohr 11

Looking at the combined bending moment diagram, we have:

o [em {1 (]2

=72R-900

Find 6, by Mohr |

Since the tangent at A is vertical, the rotation at B will be the change in rotation from
A to B:

Therefore, by Mohr I:

El6, = Area of (M]
B toA

=6-6R-120-6
=36R—-720
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Equate and Solve for R

As identified previously:

ADB :608
72R —900 = 6[36R — 720]
R =18.13 kN

Diagrams

Knowing R we can then solve for the reactions, bending moment and shear force
diagrams. The results are:

fie 297 .87
1 <.
“.?_S{}_.BW (2 v 7 I
? Y-y 1213 813
/
7T v
1S \_» < s
bor frena Boad 2FD
CMM\ (J"'J)
31
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Part (b)

The movement at E is comprised of &,, and 66, as shown in the deflection diagram.

These are found as:
¢ Since the length of member BD doesn’t change, J,, = J;, . Further, by Mohr II,

Ogy = Aga;

e By Mohr I, 6, =6, —d&,,, that is, the rotation at D is the rotation at B minus

the change in rotation from B to D:

&z

— S— f—

> \/\'ifleeb

~

So we have:

ElA,, = [6R-6][3]-[120-6][3]
= 2025

Eld6,, :E-GR-G}—E-QO&}

=146.25

Notice that we still use the primary and reactant diagrams even though we know R.

We do this because the shapes and distances are simpler to deal with.

From before we know:
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Elg, =36R—720=67.5

Thus, we have:

Elg, =El6, —d6,,
=67.5-146.25
=_78.75

The minus indicates that it is a rotation in opposite direction to that of 6, which is

clear from the previous diagram. Since we have taken account of the sense of the
rotation, we are only interested in its absolute value. A similar argument applies to

the minus sign for the deflection at B. Therefore:

§Ex = 5Bx + 69D

202.5 78.75
= +6-
El El
_675
El

Using EI =40 MNm?® gives &, =16.9 mm.
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4.5 Example 9: Complex Frame

For the following frame of constant El =40 MNm?, using Mohr’s theorems:
(a) Draw the bending moment and shear force diagram;

(b) Determine the horizontal deflection at D.

Lobadfun
T <fpa 2P
t ] 6ol =
—

B
EL

—

To be done in class.
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4.6 Problems

1. For the following prismatic beam, find the bending moment diagram and the

rotation at E in terms of El.

A ilf.OQ'd Sl
[ ol

A 7 s E

» B &P )

3 7
.4[£ /I{’ 2 Je iz LL

2. For the following prismatic beam, find the bending moment diagram and the
rotation at C in terms of El. (Autumn 2007)

joo/cn/
5y R

A T
Jé Q ;31,

3. For the following prismatic frame, find the bending moment and shear force

diagrams and the horizontal deflection at E in terms of EI.

B
(tOlen) bﬁﬁéouu
4 ﬁ % ;g;

)L 3 L 3 )
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4. For the following prismatic frame, find the bending moment diagram and the

horizontal deflection at D in terms of EI. (Summer 2006)

9okl B - D
—> j_ 7"
It

e

—:’irﬁ
%37\L3}

5. For the following prismatic frame, find the bending moment diagram and the

horizontal defection at C in terms of EI. (Summer 2007)

(ool &
P p:
3 L2 o
X ALk
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